
Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

RM2PT: Automated Prototype Generation from
Requirements Model

Yilong Yang

Department of Computer Science and Information
Faculty of Science and Technology

University of Macau
Macau. China

yylonly@gmail.com

June 18, 2019

1 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Contents

1 Motivation

2 Overview

3 Prototype Generation

4 Evaluation

5 Conclusion and Future Work

2 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Contents

1 Motivation

2 Overview

3 Prototype Generation

4 Evaluation

5 Conclusion and Future Work

3 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Motivation

Rapid prototyping is an effective and efficient way for requirements
validation.

However, manually developing a prototype would increase the overall
cost of software development.

It is very desirable to have an approach and a CASE tool that can
automatically generate prototypes directly from requirements.

4 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Related Work

Current UML modeling tools can only generate skeleton code, where
classes only contain attributes and operation signatures, not their
implementations.

To generate prototypes, a design model is required, which contains
how to encapsulate system operations into classes and how to
collaborate objects to fulfill system operations.

They lack the mechanism to deal with the non-executable elements
in the requirements model.

The generated prototype does not provide the automatic
mechanisms in run-time to consistency checking and state
observations for requirements validation.

5 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Contribution

We introduce a CASE tool for generating prototypes automatically, which

do not require design models but only rely on a requirements model

provide a mechanism to identify the non-executable parts of a
contract and wrap them into an interface, which can be fulfilled by
developers manually or third-party APIs

contain validity and consistency checking as well as state
observation in the generated prototypes

6 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Overview
Requirements Model

Contents

1 Motivation

2 Overview

3 Prototype Generation

4 Evaluation

5 Conclusion and Future Work

7 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Overview
Requirements Model

Overview

Generate

MVC Prototype

Controller

View 

Model 

Requirements Model

Use Case Diagram

Conceptual Class Diagram

System Sequence Diagrams

Contracts of System Operations

RM2PT

8 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Overview
Requirements Model

Requirements Model

2. System Sequence Diagrams

1. Use Case Diagram

3. Contracts of System Operations

9 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Overview
Requirements Model

Requirements Model

4. Conceptual Class Diagram
10 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Prototype GUI

Contents

1 Motivation

2 Overview

3 Prototype Generation

4 Evaluation

5 Conclusion and Future Work

11 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Prototype GUI

Prototype GUI (Execution)

System Operation List Operation Widget

Use Case Diagram

System Sequence Diagrams

System Operation Contract

Prototype GUI (Part 1)

Generate

Generate

12 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Prototype GUI

Prototype GUI (Execution)

13 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Prototype GUI

Prototype GUI (Observation)

The Attributes of Objects

Conceptual Class Diagram

The Associations of Objects

Objects Statistics

Prototype GUI (Part 2)

Generate

14 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Case Studies
Results of Prototype Generation
Automated Prototyping vs Manual Prototyping
Discussion

Contents

1 Motivation

2 Overview

3 Prototype Generation

4 Evaluation

5 Conclusion and Future Work

15 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Case Studies
Results of Prototype Generation
Automated Prototyping vs Manual Prototyping
Discussion

Case Studies

ATM - Automated Teller Machine

CoCoME - Supermarket System

LibMS - Library Management System

LoanPS - Loan Processing System

16 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Case Studies
Results of Prototype Generation
Automated Prototyping vs Manual Prototyping
Discussion

Complexity of Requirements Models

Table 1: The Complexity of Requirements Models

Case Study Actor Use Case SO AO Entity Class Association INV

ATM 2 6 15 103 3 4 5

CoCoME 3 16 43 273 13 20 10

LibMS 7 19 45 433 11 17 25

LoanPS 5 10 34 171 12 8 12

Sum 17 51 137 980 39 49 52

* Above table shows the number of elements in the requirements model. SO and AO are the ab-
breviations of system and primitive operations respectively. INV is the abbreviation of invariant.

17 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Case Studies
Results of Prototype Generation
Automated Prototyping vs Manual Prototyping
Discussion

Cost of Requirements Modeling

Table 2: Cost of Requirements Modeling

Case Study UML Diagram OCL Contracts Total (hours)

ATM 1.01 1.32 2.33

CoCoME 4.55 4.91 9.46

LibMS 4.64 6.37 11.01

LoanPS 5.51 6.94 12.45

Average 3.92 4.88 8.81

* UML diagram contains a use case diagram, system sequence diagrams,
and a conceptual class diagram.

18 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Case Studies
Results of Prototype Generation
Automated Prototyping vs Manual Prototyping
Discussion

Generation Result of System Operations

Table 3: The Generation Result of System Operations

Case Study NumSO MSuccess GenSuccess SuccessRate (%)

ATM 15 15 15 100

CoCoME 43 41 40 93.02

LibMS 45 43 42 93.33

LoanPS 34 30 30 88.23

Average 34.25 32.25 31.75 93.65

* MSuccess is the number of SO which is modeled correctly without external event-
call, GenSuccess is the number of SO which is successfully generated, SuccessRate
= GenSuccess / NumSO.

19 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Case Studies
Results of Prototype Generation
Automated Prototyping vs Manual Prototyping
Discussion

Automated Prototyping vs Manual Prototyping

Table 4: Manual Prototyping

Case Study Implementation Testing Debugging Total (hr)

ATM 6.09 4.63 3.90 14.62

CoCoME 15.08 8.80 8.31 32.19

LibMS 18.28 9.18 7.29 34.74

LoanPS 13.23 8.96 8.79 30.98

Average 13.17 7.89 7.07 28.13

20 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Case Studies
Results of Prototype Generation
Automated Prototyping vs Manual Prototyping
Discussion

Automated Prototyping vs Manual Prototyping

Table 5: Automated Prototyping

Name Line of Code Automated Prototype (ms) System Operation (ms)

ATM 3897 309.74 2.26

CoCoME 9572 788.99 9.78

LibMS 12017 1443.39 18.22

LoanPS 7814 832.78 5.52

Average 8325 843.73 8.95

21 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Case Studies
Results of Prototype Generation
Automated Prototyping vs Manual Prototyping
Discussion

Scope and Limitation

Our approach has the scopes of application for practical problems.

The requirements model and the generated prototypes of our
approach are object-oriented.

Our approach suitable for modeling and validating object-oriented
information systems, enterprise systems, and interactive systems.
The batching systems have heavy internal workloads are not suited
for.

Moreover, our approach focuses on functional requirements but not
non-functional requirements such as time, dependability, security,
and space. That means the real-time systems, embedding systems,
and cyber-physical systems are not suitable for our approach.

22 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Contents

1 Motivation

2 Overview

3 Prototype Generation

4 Evaluation

5 Conclusion and Future Work

23 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Conclusion

We presents a CASE tool to automated prototype generation from a
requirements model.

The executable parts of the contract are translated into Java source
code. The non-executable parts of a contract can be identified and
wrapped by an interface, which can be fulfilled by third-party APIs.

Four cases studies have been investigated, and the experiment result
is satisfactory that the 93% of system operations of use cases can
be generated successfully in 1 second.

24 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

Future Work

Improve the current transformation algorithm to cover the more
substantial subset of the executable specification.

Integrate current prototyping tool with our another work on
automated translating use case definitions in natural language into
their corresponding formal contract in OCL.

Furthermore, after a system requirements model is validated by
prototyping, we plan to generate the prototype into its
corresponding real system.

25 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

RM2PT

26 / 27



Motivation
Overview

Prototype Generation
Evaluation

Conclusion and Future Work

THANK YOU

27 / 27


	Motivation
	Overview
	Overview
	Requirements Model

	Prototype Generation
	Prototype GUI

	Evaluation
	Case Studies
	Results of Prototype Generation
	Automated Prototyping vs Manual Prototyping
	Discussion

	Conclusion and Future Work

